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The system of equations of one-dimensional motion of a conducting gas (plas-
ma) under the effect of strong electromagnetic fields for the case of small
magnetic Reynolds numbers 1s reduced to one equation by means of an appro-
priate selection of variables. Self=-similar solutions of this equation are
investigated and a solution is also given for the problem of the motion of
& conducting gas in an unlimited channel under the effect of an alternating
electromagnetic fleld.

1, Let us consider the one-dimensional unsteady motion of a plasma (con-
ducting gas). In addition to the customary assumptions for which the motion
of a plasma may be considered one-dimensional, let us also assume that in
the case under consideration the electromagnetic forces are much greater
than the pressure forces so that the term containing the pressure gradient
in the equation of motion may be neglected. There are approprlate estimates
for when this assumption 1s valid (e.g. in [1]). Hence, the equations of
one-dimensional unsteady motion of a plasma under the effect of electromag-
netic forces are

dp ap du
gt tea =0 (1.1)
ou du 1 olr o 4TS/ 4- 1
Py touG =—mHy, e (E—uH) (12

Here ¢t 18 the time, x the coordinate along the channel axis, p the
density, u the plasma veloclity, & the magnetic and F the electric field
intensities, ¢ the conductivity which will be considered constant and ¢
the veloclty of light in vacuo.
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In place of x 1let us introduce the new independent variable n by means

of Formula x t
m= S pdr — S Poolt g Bt (1.3)
o o

where o¢,, and u,, are the values of the density p and the velocity u

at x = 0 . The physical meaning of the Lagrange coordinate m may be cla-
rified by noting that the first integral in (1.3) is the mass of gas refer-
red to unit cross-sectional area of the channel which is between the initial
section and the section with the coordinate x at a given time ¢ . The
second Integral in (1.3) ylelds the whole mass of gas which has flowed into
the channel through the x = 0 section within the time from ¢ = 0 to the
considered time ¢ . Therefore, m 1is the negative of the mass of gas
included between the particles in the section of the channel with coordinate

x at time ¢ and the gas particles which passed the origin at time ¢ = O.

Differentiating (1.3) with respect to x and ¢ we obtain

x
om om 6pd
i e o) 2 = \sr T — Poolloe = — PU
o
Here the continuity equation (1.1) has been used for the last relation

with the resalt that

9
S%dft: — pu + Pooléoo
Remarking also that
dr 1 1 dr om Oz
m T mer = W T wam (1.4)
ve transform (1.1), (1.2) to the independent ¢ and m variables
dp g Ou du ! oH ) . 4no ( 1 ) =
R0 S — LHE o= — (B Gul) (L)

This system of equations may easily be reduced to one equation., Let us
execute ’chis transformation in the case when the magnetic Reynolds number is
such that the induced magnetic field may be neglected in comparison with the
external magnetic fleld.

Eliminating 3#/3m in this case, we obtain in place of (1.5)
au du s 1
5 I . .
—}—p o =0, 7 ——-CPH(E p uH) (1.6)

where F and § are given functions of x and ¢

Let us now introduce & new desired function of x . Using (1.4) we obtal
that the first equation of (1.5) will be satisfied identlcally and the second

will yleld

atr — B
If the veloeity distribution u, and the density p, of the plasma along

%z cH? (cE ax) 8z (1.7)
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the length of the channel are given at the 1nitial instant, then m(xo) can
be determined from (1.3). Evaluating the inverse function x,(m) and noting
that y = xtr, we obtain the initial conditions in the form

r =z, (m)7 xt' = U, (m) for t =0 (1-8)

In the general case of a bounded channel, it is necessary to assign bound-
ary conditions in addition to the initial conditions (1.8). Assuming that
the entrance to the channel is at the x = 0 section, it is possible to give
the velocity and discharge (density) of the gas as a function of the time as
the boundary conditions at x = 0 .,

Assignment of these quantities permits the determination of m = m(t) at
x =0,

Hence, the boundary conditions in the m and ¢ varliables will be
= O' zy = uoo(t) for m = m(t)
Equation (1.7) 1s a nonlinear second order equation in tne unknown func-

tion x . It is very difficult to investigate its solution in the general
form,

Hence, let us first consider in detail that particular case when the
motion 1s such that £ > c¢-!u H and the external electromagnetic field
depends only on time. Then, the second term on the right-hand side of (1.7)
may be dlscarded as compared to the first. We hence obtain

a*z [ ot* = f(t)dx / om (1.9)

where for brevity we have introduced the notation
(0/c) E ()H(t) = f(2)

2, Let us consider self-similar motions first. Let the »n dimensional
constants a,,...,a, enter into (1.9), the boundary and initlal conditions.
Let us take the quantities x, ¢ and m as independent dimensions. With-
out limiting the generality, we may assume that a, contains the dimension
x . Then combining g,,...,8, With g, it is possible to obtain n — 1 new
constants a,’,...,a,’ instead of the g,,...,a,, where these former will
not contain the dimension x . In order that (1.9) should admit self-simi-
lar solutions, 1t is necessary that among the constants ap’,...,a,’ there
be at least one with an independent dimension [2]). The function f(t) in
(1.9) may be represented as

1) = aof\(t/ &)

where the dimension of the constant is [a,] = [m/t2] and s, 1s a non-
dimensional functlion. Since the dimensions of g, and ¢, are independent,
the self-similar solutions will exist only when ys(¢) has the form

(&) = k= 21
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Furthermore, wilthout carrying out computations, let us note that 1f the
functions in the initial or boundary conditions are not identically zero,
they sould have a definite form so that no new constants with independent
dimension would appear and the solution would still be self-similar., Namely,
the initial and boundary conditions should be

Bt 8
= almz-m, Il, = a2m2+tz for t— (22)
z =0, x = at? for m = agt?*®

Hence (1.9) will have a self-similar solution of the form

z = atf1 ¢ (A) (2.3)
where ¢ 1s a nondimensional function and the nondlimensional variable X
equals

A = 71‘_ mi-(2ta) (2.4)

Substituting (2.3) into (1.9) we obtain an ordinary differential equation
for the determination of the function o))

B = [+ 32(+ 1 - S 3]o +0 Do =0 @

The solution of (2.5) contains two arbitrary constants. Hence, it 1s
impossible to satisfy two boundary and two initial conditlons at the same
time if the constants therein are given arbltrarily (i.e. the motlon will not
be self-similar ). The questlon 1s simplified in two cases, Firstly, if the
motion occurs 1n an unbounded channel. This problem will be consldered below
since a solution even for non-self-similar motion has successfully been
obtained for the unbounded channel. Secondly, when there is no plasma in
the channel at the initial instant, i.e. the initial parameters are zero.

A number of problems of practical interest concerning the inlitial perlod of
operation of a plasma-acceleration channel when the channel starts to be
filled with plasma and the electric and magnetic flelds grow from zero after
the system has been connected, reduces to this case.

Reducing the boundary conditlons (2.2) to nondimensional form, we obtain
two boundary conditions for ¢

¢ =0, ¢'=—m%70 for b= =k (2.6)

As an example, let us find the final solution of the following problem:
plasma starts to flow into a channel at time ¢ = 0 with the velocity
u = gt® and the constant density p . The electric and magnetic fields grow
such that p{(t) = 1.5¢ .

Prom (1.3), (2.1), (2.2), (2.4) and (2.6) we find that in the example
considered we willl have

a =1, =2 k= 1.5, Ay = — Ysap
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Equation {2.5) and boundary conditions (2.6) take the form
4" — (1 + 6M) @’ + 6 = (2.7)
¢ =0, ¢ = — 1/(2 7\'0) for A = Ao (2.8)

The general integral of (2.7) will be

A
/ o . 1.5 '”‘“’dl

where ¢, and (¢, are arbitrary constants.

Determining their values from the boundary conditions (2.8), we obtain
Cy= — 0.5 + 6h) A%/ €, =0 (2.10)

Subrtituting (2.9) and (2.10) into (2.3), we find the desired expression

for x N
3 s pL5 e—l/(u)
A

dh

3, Let us now carry out the solution of the problem of plasma moticn in
an unbounded channel in the general case. Let the veloclty distribution and
the density along the channel length be known at the 1lnitlial instant in a
channel unbounded at both ends. It 1is required to determine the motion origi-
nating from this initlal state under the effect of a given constant electro-
magnetic field along the length of the channel but which changes with time.

As has been shown above, the question reduces to seeking the solution of
(1.9) which will satisfy the initial conditions (1.8). Let us seek the solu-
tion in the form of the infinite seriles

e ]
=2 [2™(m) $a(t) + u™ () %n ()] (3.1)
n=0
where Z,™ and u,(™ are the nth derivative of x, and uy,

Substituting (3.1) into (1.9), we find that %or (3.1) to be a solution it
1s necessary that

t ¢
{ ;
%dtgf )b,y dt, = (Sdtéf (1) x,_, e (3.2)
and we find from the initial conditions (1. 8)
‘Po = 1v %o = (3.3)

Formulas (3.1) to {°.3) yleld the solution of the formulated problem in
the general case. Let us lllustrate their use 1n a specific example,

At ¢t = O 1let the plasma veloclity be 1y = U and let the denslty be
distribuvted according to the law

=1/2VI—CE for x>0, P=0  for <0
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It 1s required to determine what motion will originate from this initial
state under the effect of a periodlc electromagnetic field, i.e. for
J =4 sin wt

We calculate the connection between x and m at ¢ = O by means of
(1.3). Performing the computations we obtain the initial conditions in the
considered example in the form

z = km?, ' =0 for t=0 (3.4)
By means eof (3.2) we calculate
P, = Ao-? (ot — sin ot) (3.5)

Y, = Y5 A%0-* (17 — 20%? — 8wt sin ot — 16 cos wt — cos 2wt)

It is necessary to evaluate ¥, for n » 3 and X, 8ince for the glven
boundary conditions (3.6)

xy' = 2km, z =2k 2™ =0 for n>3 wWW=0 for 220

Substituting (3.4), (3.5) and (3.6) into (3.1), we obtain the final for-

mulas describing the plasma motion
1

z =k [m* + 240~ (ot — sin ot) m + Y A% (17 —
— 20%? — 8ot sin wt — 16 cos ot — cos 2vt)] (3.7)

Differentiating (3.7) with respect to time, we calculate the particle
velocity
u =k[24A0-* (1 — cos wt) m —
— A%0-% (ot — 2 sin ot + 2 wt cos vt — !/, sin 2wt)] (3.8)

Eliminating m from (3.7) and (3.8), we may find the dependence of the
particle velocity on the coordinate x . In order not to write down the awk-
ward and poorly illustrative formulas, let us perform these computations only
for the times t = (2n + 1)t/ w and = 2nn /. Omitting the intermediate
rormulas we arrive at the final result

= ﬂ‘{z, (% 2 + mr 3 @0 + 19252 — 161)" — 22 20 4 1) n} 3.9)

©
@Gn+1n
==

u = — BkA’nne-®  for t= 2nme (3.10)

for ¢t

It 18 seen from {3.9) and (3.10) that the plasma will perform oscillatory
motion in the sense that the particle velocity periodically changes sign.
However, these will not be oscillations of the particles around some fixed
equilibrium position. In fact, it follows from (3.7) and the initial condi-
ticns (3.4) that a particle at the point x, in the right half of the chan-
nel at the initial instant would, after »n periods, i.e, at ¢ = ann/b have
deviated from its original position by
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z — xy = 2Aknn(20’m — Ann)/ o* (3.11)

It is seen from (3.11) that for a fixed particle, i.e. for a fixed m ,
sooner or later the x — x, would become negative as n 1increases. Hence,
for particles for which m > An/2w®, first x — x, grows and then it decreases
and becomes negative. Hence, the plasma performs a complex motion in which
the plasma particles move, while oscillating on the average first to the
right and then to the left. A peculiar wave seems to be propagated along
the plasma particles, which first slows down the average motion of the par-
ticles to the right and then involving them in average motion to the left.
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